
Note: In this problem set, expressions in green cells match corresponding expressions in the 
text answers.

Clear["Global`*⋆"]

3 - 10 Maclaurin Series
Find the Maclaurin series and its radius of convergence.

3. Sin2 z2

Clear["Global`*⋆"]

By asking for the series to be generated around the origin, I ask for the Maclaurin series,

ser = SeriesSin2 z2, {z, 0, 16}

2 z2 -−
4 z6

3
+
4 z10

15
-−
8 z14

315
+ O[z]17

It seems that Mathematica cannot provide useful cooperation in the case of the problem 
function. SumConvergence, with or without TrigReduce, does not seem to work in estab-
lishing the radius of convergence. In fact, observe the following,

SumConvergenceSin2 z2, z

False

The false indication makes me wary altogether. So this alternative method. First I will copy 
from numbered line (14) on p. 695, the series expression of the sine function,

thi = HoldFormSum(-−1)n
z2 n+1

(2 n + 1)!
, {n, 0, ∞}


n=0

∞ (-−1)n z2 n+1

(2 n + 1)!

Mathematica identifies this with sine function immediately, thus the need for HoldForm to 
prevent undesired simplification. Then to modify the sine series to match the problem 
expression,
thi2 = thi /∕. z → 2 z2


n=0

∞ (-−1)n 2 z22 n+1

(2 n + 1)!

Now I will hand this term on to the SumConvergence function,



SumConvergence
(-−1)n 2 z22 n+1

(2 n + 1)!
, n

True

The previous cell confirms convergence, but I want the radius of convergence. To use the 
Cauchy-Hadamard formula, I need to separate the z and n parts of the expression,

Expand2 z22 n+1

21+2 n z21+2 n

The above form reveals the center of the series, which is 0, no great surprise for a Maclau-
rin series. Note that z, when called on, will be raised to the 4th power of n. Okay, at this 
point I can use the Cauchy-Hadamard formula,

LimitAbs
(-−1)n 21+2 n

(2 n + 1)!

(2 n + 2)!

(-−1)n+1 22+2 n
, n → ∞

∞

Applying the power of the power term,
∞1/∕4

∞

The above answer matches the radius of convergence shown in the text’s answer.

5.
1

2 + z4

Clear["Global`*⋆"]

By asking for the series to be generated around the origin, I ask for the Maclaurin series,

Series
1

2 + z4
, {z, 0, 16}

1

2
-−
z4

4
+
z8

8
-−
z12

16
+
z16

32
+ O[z]17

Testing for convergence,

SumConvergence
1

2 + z4
, z

True

in a verification of some radius of convergence. Then try to find the radius of convergence 
the easy way,
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Sum
1

2 + z4
, {z, 0, ∞}, GenerateConditions → True

1

8
2 + (-−2)1/∕4 π Cot(-−2)1/∕4 π + (-−2)1/∕4 π Coth(-−2)1/∕4 π

The above cell is beyond my capability to simplify, and Mathematica won’t alter it either. I 
can kludge the general term,

tri[n_] = (-−1)n
z4 n

2n+1

(-−1)n 2-−1-−n z4 n

and check it,
TableForm[Table[{n, tri[n]}, {n, 0, 4}]]

0 1
2

1 -− z4

4

2 z8

8

3 -− z12

16

4 z16

32

At this point it looks like I’m ready to try Cauchy-Hadamard,

LimitAbs
(-−1)n

2n+1
2n+2

(-−1)n+1
, n → ∞

2

And the power of the power term is 4, thus
(2)1/∕4

21/∕4

The above cell matches the answer in the text.

7. Cos
z

2

2

Clear["Global`*⋆"]

Calling for my Maclaurin,

SeriesCos
z

2

2
, {z, 0, 12}

1 -−
z2

4
+
z4

48
-−

z6

1440
+

z8

80 640
-−

z10

7 257 600
+

z12

958 003 200
+ O[z]13
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Somehow I need to put together the general term,
FindSequenceFunction[{-−4, 48, -−1440, 80640, -−7 257600, 958003200}, n]

(-−1)n 21+2 n Pochhammer
1

2
, n Pochhammer[1, n]

I couldn’t get an answer out of Mathematica using the above function unless I dropped the 
first term of the series. Trying to simplify a bit,
FullSimplify[%]

2 (-−1)n Gamma[1 + 2 n]

The Gamma function is not difficult, although some of the others Mathematica throws out 
are daunting. In general in this situation though, the amount of knowledge necessary con-
sists solely of knowing how to form the an+1 term from the an term.
testg[n_] = (-−1)n 2 Gamma[1 + 2 n]

2 (-−1)n Gamma[1 + 2 n]

testh[n_] = (-−1)n 2 (2 n)!

2 (-−1)n (2 n)!

Checking, starting with n=1,
TableForm[Table[{n, testg[n], testh[n]}, {n, 1, 6}]]
1 -−4 -−4
2 48 48
3 -−1440 -−1440
4 80 640 80 640
5 -−7 257600 -−7 257600
6 958003200 958003200

testh[n] was lifted from the text answer. If I had had a brainwave and had seen the pattern 
on my own, the process would be more direct than using FindSequenceFunction.

Setting up the n part of the expression, not worrying about the z part at the moment,

coef =
(-−1)n

2 Gamma[1 + 2 n]
(-−1)n

2 Gamma[1 + 2 n]

Ready to examine the limit governing the Cauchy-Hadamard. Not having the initial term 
should not be a handicap, as I have my sights set on much bigger terms now,

LimitAbs
(-−1)n

2 Gamma[1 + 2 n]

2 Gamma[1 + 2 (n + 1)]

(-−1)n+1
, n → ∞

∞

Up until now I have ignored the power term. But it is of the form z2 n. So applying its effect 
amounts to

4     15.4 Taylor and Maclaurin Series 690.nb



Up until now I have ignored the power term. But it is of the form z2 n. So applying its effect 
amounts to
∞1/∕2

∞

The green cell above matches the answer in the text. (That a0 term that I ignored, I con-
tinue to treat as inconsequential.)

9. IntegrateExp
-−t2

2
, {t, 0, z}

Clear["Global`*⋆"]

Calling for my Maclaurin,

SeriesExp
-−t2

2
, {t, 0, 12}

1 -−
t2

2
+
t4

8
-−
t6

48
+

t8

384
-−

t10

3840
+

t12

46 080
+ O[t]13

At https : // www.dummies.com/education/math/calculus/how - to - integrate - a - power - series/ I 
learned how to integrate a power series term by term. A key concept was that after the term 
by term integration you can turn the result back into another power series. So how about a 
short cut, would that work?

IntegrateExp
-−t2

2
, {t, 0, z}

π

2
Erf

z

2


Series
π

2
Erf

z

2
, {z, 0, 15}

z -−
z3

6
+
z5

40
-−

z7

336
+

z9

3456
-−

z11

42 240
+

z13

599 040
-−

z15

9 676 800
+ O[z]16

The above green cell matches the text answer. The thing I haven’t got yet is the radius of 
convergence.

Aiming to build the general term,
FindSequenceFunction[
{1, -−6, 40, -−336, 3456, -−42 240, 599040, -−9 676800}, n]

(-−1)1+n 2-−1+n (-−1 + 2 n) Pochhammer[1, -−1 + n]

15.4 Taylor and Maclaurin Series 690.nb     5



FullSimplify[%]

(-−1)1+n 2-−1+n (-−1 + 2 n) Gamma[n]

testg[n_] = (-−1)1+n 2-−1+n (-−1 + 2 n) Gamma[n]

(-−1)1+n 2-−1+n (-−1 + 2 n) Gamma[n]

testh[n_] = (-−1)1+n (2 n -− 1) 2n-−1 (n -− 1)!

(-−1)1+n 2-−1+n (-−1 + 2 n) (-−1 + n)!

TableForm[Table[{n, testg[n], testh[n]}, {n, 1, 7}]]
1 1 1
2 -−6 -−6
3 40 40
4 -−336 -−336
5 3456 3456
6 -−42 240 -−42240
7 599040 599040

testh[n], inspired from the text answer, and realized through the FindSeqenceFunction, 
begs the search, because I could not have done it entirely on my own.

Setting up the n part of the expression, not worrying about the z part at the moment,

coef =
(-−1)n+1

2-−1+n (-−1 + 2 n) Gamma[n]

(-−1)1+n 21-−n

(-−1 + 2 n) Gamma[n]

Ready to examine the limit governing the Cauchy-Hadamard.

LimitAbs
(-−1)n+1

2-−1+n (-−1 + 2 n) Gamma[n]

2n (-−1 + 2 (n + 1)) Gamma[n + 1]

(-−1)n+2
, n → ∞

∞

Up until now I have ignored the power term. But it is of the form z2 n-−1. So applying its 
effect amounts to going with my old standard policy of regarding only the part of the term 
involving n, which makes it, in this case, 2 n. So,
∞1/∕2

∞

The green cell above matches the answer in the text.

11 - 14 Higher transcendental functions
Find the Maclaurin series by termwise integrating the integrand. (The integrals cannot be 
evaluated by the usual methods of calculus. They define the error function erf z, sine 
integral Si(z) and Fresnel integrals S(z) and C(z), which occur in statistics, heat conduc-
tion, optics, and other applications. These are special so-called higher transcendental 
functions.)
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11 - 14 Higher transcendental functions
Find the Maclaurin series by termwise integrating the integrand. (The integrals cannot be 
evaluated by the usual methods of calculus. They define the error function erf z, sine 
integral Si(z) and Fresnel integrals S(z) and C(z), which occur in statistics, heat conduc-
tion, optics, and other applications. These are special so-called higher transcendental 
functions.)

11. S[z_] = IntegrateSint2, {t, 0, z}

Clear["Global`*⋆"]

Getting ready to work on a Fresnel integral. Working this experimentally. First, I use plain 
old Integrate applied to the problem function,

IntegrateSint2, {t, 0, z}

π

2
FresnelS

2

π
z

As the above cell shows, the answer to the integration is expressed in FresnelS, a function 
which is built in to Mathematica. So I can express this answer as a series, saving aside the 
leading coefficient for now,

SeriesFresnelS
2

π
z, {z, 0, 36}

1

3

2

π
z3 -−

z7

21  2 π 
+

z11

660 2 π
-−

z15

37 800  2 π 
+

z19

3 447 360 2 π
-−

z23

459 043 200  2 π 
+

z27

84 064 780 800 2 π
-−

z31

20 268 952 704000  2 π 
+

z35

6 224 529 991680000 2 π
+ O[z]37

Then, inserting the coefficient and simplifying, I get
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Simplify
π

2

1

3

2

π
z3 -−

z7

21  2 π 
+

z11

660 2 π
-−

z15

37 800  2 π 
+

z19

3 447 360 2 π
-−

z23

459 043 200  2 π 
+

z27

84 064 780 800 2 π
-−

z31

20 268 952 704000  2 π 
+

z35

6 224 529 991680000 2 π
+ O[z]37 

z3

3
-−
z7

42
+

z11

1320
-−

z15

75 600
+

z19

6 894 720
-−

z23

918 086 400
+

z27

168 129 561600
-−

z31

40 537 905 408000
+

z35

12 449 059 983360000
+ O[z]37

And the above green cell happens to be the answer. There is still the radius of convergence 
to discover. It takes a little work to get the FindSequenceFunction enough numbers to 
consider, here, 8, in order to yield an answer. It wouldn’t do it with 7. When it did return 
an answer, it was nearly instantaneous, in spite of the rather large numbers involved.
FindSequenceFunction[{3, -−42, 1320, -−75600,

6 894720, -−918086400, 168129561600, -−40537905408000}, n]

(-−1)1+n 4-−1+n (-−1 + 4 n) Pochhammer[1, -−1 + n] Pochhammer
3

2
, -−1 + n

FullSimplify[%]

(-−1)1+n (-−1 + 4 n) Gamma[2 n]

Now, like before, I’ll test to make sure the denominator coefficients spawn true.
testg[n_] = (-−1)1+n (-−1 + 4 n) Gamma[2 n]

(-−1)1+n (-−1 + 4 n) Gamma[2 n]

testh[n_] = (-−1)1+n (2 n -− 1)! (4 n -− 1)

(-−1)1+n (-−1 + 4 n) (-−1 + 2 n)!

TableForm[Table[{n, testg[n], testh[n]}, {n, 1, 7}]]
1 3 3
2 -−42 -−42
3 1320 1320
4 -−75 600 -−75600
5 6 894720 6 894720
6 -−918086400 -−918086400
7 168129561600 168129561600

testh[n] was lifted from the text answer. If I had had magic synapses and had seen the 
pattern on my own, the process might have been slightly simpler than using 
FindSequenceFunction.
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testh[n] was lifted from the text answer. If I had had magic synapses and had seen the 
pattern on my own, the process might have been slightly simpler than using 
FindSequenceFunction.

Setting up the n part of the Cauchy-Hadamard expression, not worrying about the z part at 
the moment,
coef = (-−1)1+n (-−1 + 4 n) Gamma[2 n]

(-−1)1+n (-−1 + 4 n) Gamma[2 n]

LimitAbs
1

(-−1)1+n (-−1 + 4 n) Gamma[2 n]
(-−1)2+n (-−1 + 4 ( n + 1)) Gamma[2 ( n + 1)]

1
, n → ∞

∞

How about the power term? The power of the power term is 2n+1. Which from my method 
in previous problems, will have the effect of
∞1/∕2

∞

13. erf[z] =
2

π
Integrateⅇ-−t2, {t, 0, z}

Clear["Global`*⋆"]

To match the text answer, it will help to set aside the leading coefficient for a moment,

Integrateⅇ-−t2, {t, 0, z}

1

2
π Erf[z]

Mathematica immediately rolls it up into the eponymus function.

Series
1

2
π Erf[z], {z, 0, 12}

z -−
z3

3
+
z5

10
-−
z7

42
+

z9

216
-−

z11

1320
+ O[z]13

Then restoring the coefficient,

2

π
z -−

z3

3
+
z5

10
-−
z7

42
+

z9

216
-−

z11

1320
+ O[z]13

gives me the text answer.

18 - 25 Taylor series
Find the Taylor series with center z0 and its radius of convergence.
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19.
1

1 -− z
, z0 = 1

Clear["Global`*⋆"]

First, a naïve try,

ard = Series
1

1 -− z
, {z, 1, 8}

-−
1

z -− 1
+ O[z -− 1]9

is not successful. The s.m. advises to work this according to example 7, p. 696, using c=1 
and z0=ⅈ, developing in powers of z-− z0, where c-− z0 ≠0. It would look like
1

c -− z
⩵

1

1 -− z
⩵

1

1 -− z0 -− (z -− z0)
⩵

1

1 -− ⅈ -− (z -− ⅈ)
⩵

1

(1 -− ⅈ) 1 -− z-−ⅈ
1-−ⅈ


⩵

1

1 -− ⅈ

n=0

∞ z -− ⅈ

1 -− ⅈ

n

;

working from the analogous progression of terms in the example. To get across the last 
double-equals sign involves numbered lines (7), (7*), (8*), and (8) on p. 691.

Taking the expression to the right of the last double-equals sign, and multiplying by 1+ⅈ1+ⅈ  
both inside and outside the sigma, gives

1 + ⅈ

2

n=0

∞ 1 + ⅈ

2

n

(z -− ⅈ)n

as the general term. Putting it in a form that can be easily compared with the text answer, 
and asking for 7 terms instead of an infinite number,

Sum
1 + ⅈ

2
Sequence

1 + ⅈ

2

n

(z -− ⅈ)n, {n, 0, 6}

1

2
+

ⅈ

2
+
1

2
ⅈ (-−ⅈ + z) -−

1

4
-−

ⅈ

4
(-−ⅈ + z)2 -−

1

4
(-−ⅈ + z)3 -−

1

8
+

ⅈ

8
(-−ⅈ + z)4 -−

1

8
ⅈ (-−ⅈ + z)5 +

1

16
-−

ⅈ

16
(-−ⅈ + z)6

The green cell above matches the answer in the text, for series form. As for the radius of 
convergence, also using example 7,
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ReduceAbs
z -− ⅈ

1 -− ⅈ
 < 1, z

-− 2 < Re[z] < 2 && 1 -−
4 -− 2 Re[z]2

2
< Im[z] < 1 +

4 -− 2 Re[z]2

2

The real part of the yellow cell matches the text answer, but the text answer is silent as to 
imaginary parts.

If the yellow cell is correct, a plot of the radius of curvature would resemble the one below,

ParametricPlotz,
4 -− 2 z2

2
, z, -−

4 -− 2 z2

2
,

z, -− 2 , 2 , ImageSize → 200, AxesLabel → {"Re", "Im"},
PlotRange → All, AspectRatio → Automatic,
GridLines -−> Automatic, PlotStyle → {Thickness[0.004]}

21. Sin[z], z0 =
π

2

Clear["Global`*⋆"]

First, a naïve try,

SeriesSin[z], z,
π

2
, 12

1 -−
1

2
z -−

π

2

2
+

1

24
z -−

π

2

4
-−

1

720
z -−

π

2

6
+

z -− π
2

8

40 320
-−

z -− π
2

10

3 628 800
+

z -− π
2

12

479 001 600
+ Oz -−

π

2

13

Surprisingly, this one pops right out. Using the powers of the power terms, I think I can 
actually deduce the sequence of this one. On second thought, maybe I will use 
FindSequenceFunction, since it is so much easier,
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FindSequenceFunction[{1, -−2, 24, -−720, 40320, -−3 628800, 479001600}, n]

(-−1)1+n 4-−1+n Pochhammer
1

2
, -−1 + n Pochhammer[1, -−1 + n]

FullSimplify[%]

(-−1)1+n Gamma[-−1 + 2 n]

testg[n_] = (-−1)1+n Gamma[-−1 + 2 n]

(-−1)1+n Gamma[-−1 + 2 n]

TableForm[Table[{n, testg[n]}, {n, 1, 7}]]
1 1
2 -−2
3 24
4 -−720
5 40 320
6 -−3 628800
7 479001600

Setting up the n part of the Cauchy-Hadamard expression, not worrying about the z part at 
the moment,

LimitAbs
1

(-−1)1+n Gamma[-−1 + 2 n]

(-−1)2+n Gamma[-−1 + 2 ( n + 1)]

1
, n → ∞

∞

How about the power term? In this problem, the power term is determined in a simple way. 
(It’s surprising how addictive that FSF can become.)
FindSequenceFunction[{0, 2, 4, 6, 8, 10, 12}, n]

2 (-−1 + n)

And having the effect of
∞1/∕2

∞

Which agrees with the text answer.

23.
1

(z + ⅈ)2
, z0 = ⅈ

Clear["Global`*⋆"]

First, a naïve try,
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Series
1

(z + ⅈ)2
, {z, ⅈ, 8}

-−
1

4
-−
1

4
ⅈ (z -− ⅈ) +

3

16
(z -− ⅈ)2 +

1

8
ⅈ (z -− ⅈ)3 -−

5

64
(z -− ⅈ)4 -−

3

64
ⅈ (z -− ⅈ)5 +

7

256
(z -− ⅈ)6 +

1

64
ⅈ (z -− ⅈ)7 -−

9 (z -− ⅈ)8

1024
+ O[z -− ⅈ]9

The green cell above matches the text answer. Now to address a strange looking sequence 
of term coefficients

FindSequenceFunction-−
1

4
, -−

ⅈ

4
,

3

16
,

ⅈ

8
, -−

5

64
, -−

3 ⅈ

64
,

7

256
,

ⅈ

64
, -−

9

1024
, n

ⅈ

2

1+n

n

testg[n_] =
ⅈ

2

1+n

n

ⅈ

2

1+n

n

TableForm[Table[{n, testg[n]}, {n, 1, 9}]]

1 -− 1
4

2 -− ⅈ
4

3 3
16

4 ⅈ
8

5 -− 5
64

6 -− 3 ⅈ
64

7 7
256

8 ⅈ
64

9 -− 9
1024

Setting up the n part of the Cauchy - Hadamard expression, not worrying about the z part 
at the moment. Since I looked for the complete coefficient this time, not just the denomina-
tor part, the relation of n and n+1 parts is different,

LimitAbs
 ⅈ
2

1+n

n

1

1

 ⅈ
2

2+n

(n + 1)
, n → ∞

2

In this problem the power of the power term is simply n. Since I haven’t been concerned 
about the presence of a non-n factor in the power term up to now, I won’t let myself be 
bothered if it happens to be imaginary. So I give the final radius as
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In this problem the power of the power term is simply n. Since I haven’t been concerned 
about the presence of a non-n factor in the power term up to now, I won’t let myself be 
bothered if it happens to be imaginary. So I give the final radius as
21/∕1

2

The green cell agrees with the text answer.

25. Sinh[2 z -− ⅈ], z0 =
ⅈ

2

Clear["Global`*⋆"]

First, a naïve try,

SeriesSinh[2 z -− ⅈ], z,
ⅈ

2
, 15

2 z -−
ⅈ

2
+
4

3
z -−

ⅈ

2

3

+
4

15
z -−

ⅈ

2

5

+
8

315
z -−

ⅈ

2

7

+

4 z -− ⅈ
2

9

2835
+
8 z -− ⅈ

2

11

155 925
+
8 z -− ⅈ

2

13

6 081 075
+
16 z -− ⅈ

2

15

638 512 875
+ Oz -−

ⅈ

2

16

The green cell above matches the text answer. Now to try to indentify the term coefficients

FindSequenceFunction2,
4

3
,

4

15
,

8

315
,

4

2835
,

8

155925
,

8

6 081075
, n

2

Pochhammer[1, -−1 + n] Pochhammer 3
2
, -−1 + n

FullSimplify[%]

2-−1+2 n

Gamma[2 n]

testg[n_] =
2-−1+2 n

Gamma[2 n]

2-−1+2 n

Gamma[2 n]
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TableForm[Table[{n, testg[n]}, {n, 1, 9}]]
1 2
2 4

3

3 4
15

4 8
315

5 4
2835

6 8
155925

7 8
6081075

8 16
638512 875

9 4
10854718 875

Setting up the n part of the Cauchy - Hadamard expression, not worrying about the z part 
yet. Looking a lot like the last problem at the moment.

LimitAbs
2-−1+2 n

Gamma[2 n]

Gamma[2 (n + 1)]

2-−1+2 ( n+1)
, n → ∞

∞

Now to handle the power term part of the radius calculation. The power of the power term 
is 2n-1. So the effect of the power term will be
∞1/∕2

∞

The green cell matches the text answer.
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